Xem mẫu

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- CAO THỊ THANH NGHIÊN CỨU CHẾ TẠO VẬT LIỆU ỐNG NANÔ CÁCBON ĐỊNH HƯỚNG VÀ VẬT LIỆU GRAPHENE NHẰM ỨNG DỤNG TRONG CẢM BIẾN SINH HỌC Chuyên ngành : Vật liệu điện tử Mã số : 62.44.01.23 LUẬN ÁN TIẾN SỸ KHOA HỌC VẬT LIỆU HÀ NỘI – 2018
  2. BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- CAO THỊ THANH NGHIÊN CỨU CHẾ TẠO VẬT LIỆU ỐNG NANÔ CÁCBON ĐỊNH HƯỚNG VÀ VẬT LIỆU GRAPHENE NHẰM ỨNG DỤNG TRONG CẢM BIẾN SINH HỌC Chuyên ngành : Vật liệu điện tử Mã số : 62.44.01.23 LUẬN ÁN TIẾN SỸ KHOA HỌC VẬT LIỆU NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. GS.TS. Trần Đại Lâm 2. TS. Nguyễn Văn Chúc HÀ NỘI – 2018
  3. LỜI CAM ĐOAN Tôi xin cam đoan rằng đề tài: “Nghiên cứu chế tạo vật liệu ống nanô cácbon định hướng và vật liệu graphene nhằm ứng dụng trong cảm biến sinh học” là công trình của tôi. Tất cả các xuất bản được công bố chung với các cán bộ hướng dẫn khoa học và các đồng nghiệp đã được sự đồng ý của các tác giả trước khi đưa vào luận án. Các kết quả trong luận án là trung thực, chưa từng được công bố và sử dụng để bảo vệ trong bất cứ một luận án nào khác. Tác giả luận án Cao Thị Thanh [i]
  4. LỜI CẢM ƠN Trước hết, tôi xin bày tỏ lòng biết ơn sâu sắc tới GS.TS. Trần Đại Lâm và TS. Nguyễn Văn Chúc – những người Thầy đã tận tâm hướng dẫn khoa học, định hướng nghiên cứu cũng như đã động viên khích lệ và tạo mọi điều kiện thuận lợi cho tôi trong suốt quá trình thực hiện luận án. Tôi xin trân trọng cảm ơn Ban lãnh đạo Viện Khoa học vật liệu, Học viện Khoa học và Công nghệ – Viện Hàn lâm Khoa học và Công nghệ Việt Nam cùng các cán bộ trong Viện, Học viện đã quan tâm giúp đỡ và tạo điều kiện thuận lợi cho tôi trong quá trình học tập và nghiên cứu thực hiện luận án. Tôi xin chân thành cảm ơn sự hỗ trợ kinh phí từ các đề tài: Quỹ phát triển Khoa học và Công nghệ Quốc gia, mã số: 103.99-2012.15; 103.99-2016.19 (do TS. Nguyễn Văn Chúc chủ nhiệm), đề tài cấp Viện Hàn lâm KHCNVN, mã số: VAST03.06/14-15; VAST.CTVL.05/17-18 (do TS. Nguyễn Văn Chúc chủ nhiệm) và VAST.HTQT.NGA. 10/16-17 (do GS.TS. Phan Ngọc Minh chủ nhiệm). Tôi xin chân thành cảm ơn TS. Lê Trọng Lư (Viện Kỹ thuật nhiệt đới - Viện Hàn lâm KHCNVN), PGS.TS. Phan Bách Thắng, NCS. Tạ Thị Kiều Hạnh, NCS Phạm Kim Ngọc (Bộ môn Vật liệu Từ và Y Sinh, Khoa Khoa học Vật liệu - Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia TP.Hồ Chí Minh), TS. Vũ Thị Thu (Trường Đại học USTH - Viện Hàn lâm KHCNVN), NCS. Nguyễn Hải Bình, ThS. Nguyễn Văn Tú (Viện KHVL - Viện Hàn lâm KHCNVN ), TS. Matthieu PAILLET, TS. Jean-Louis Sauvajol (Đại học Montpellier, CH Pháp) đã giúp đỡ tôi rất nhiều về mặt khoa học, cơ sở vật chất cũng như trang thiết bị đo đạc trong suốt quá trình thực hiện luận án. Tôi cũng xin gửi lời cảm ơn chân thành tới tập thể cán bộ Phòng Vật liệu cácbon nanô – Viện Khoa học vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã luôn giúp đỡ, ủng hộ và tạo mọi điều kiện tốt nhất cũng như những đóng góp những kiến thức về chuyên môn đã giúp tôi hoàn thành bản luận án này. Cuối cùng, tôi xin bày tỏ lời cảm ơn sâu sắc nhất tới bố, mẹ, chồng và các con tôi, cũng như tất cả những người thân trong gia đình đã luôn cổ vũ, động viên để tôi vượt qua khó khăn, hoàn thành bản luận án này. Tôi xin chân thành cảm ơn! Tác giả luận án Cao Thị Thanh [ii]
  5. MỤC LỤC LỜI CAM ĐOAN ............................................................................................................ i LỜI CẢM ƠN ................................................................................................................. ii MỤC LỤC ...................................................................................................................... iii DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT ...................................................... vii DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ...................................................................... ix DANH MỤC CÁC BẢNG BIỂU ................................................................................ xv MỞ ĐẦU ......................................................................................................................... 1 CHƯƠNG 1: TỔNG QUAN ......................................................................................... 7 1.1. Tổng quan về vật liệu ống nanô cácbon (CNTs) .................................................. 7 1.1.1. Cấu trúc và phân loại vật liệu CNTs ............................................................... 7 1.1.2. Tính chất của vật liệu CNTs .......................................................................... 10 1.1.3. Một số phương pháp chế tạo vật liệu CNTs .................................................. 13 1.1.4. Chế tạo vật liệu CNTs định hướng bằng phương pháp CVD nhiệt ............. 14 1.1.4.1. Phương pháp CVD nhiệt trong chế tạo vật liệu CNTs định hướng ......... 14 1.1.4.2. Sự hình thành và cơ chế mọc của CNTs .................................................. 15 1.1.4.3. Điều khiển hướng mọc của CNTs bằng phương pháp CVD nhiệt ........... 16 1.1.5. Một số ứng dụng của vật liệu CNTs định hướng.......................................... 21 1.1.5.1. Một số ứng dụng của vật liệu VA-CNTs .................................................. 21 1.1.5.2. Một số ứng dụng của vật liệu HA-CNTs .................................................. 23 1.2. Tổng quan về vật liệu graphene ........................................................................... 25 1.2.1. Cấu trúc của graphene ................................................................................... 25 1.2.2. Một số tính chất của vật liệu graphene ......................................................... 26 1.2.3. Một số phương pháp chế tạo vật liệu graphene ............................................ 29 1.2.4. Chế tạo vật liệu graphene bằng phương pháp CVD nhiệt ........................... 29 1.2.4.1. Phương pháp CVD nhiệt trong chế tạo vật liệu graphene ...................... 29 1.2.4.2. Cơ chế hình thành màng graphene trên kim loại chuyển tiếp ................. 30 1.2.5. Một số ứng dụng của vật liệu graphene ........................................................ 32 1.3. Một số phương pháp phân tích, đánh giá vật liệu CNTs định hướng và vật liệu graphene ........................................................................................................................ 33 1.3.1. Phương pháp phổ tán xạ Raman ................................................................... 33 1.3.1.1. Phổ Raman của CNTs .............................................................................. 33 1.3.1.2. Phổ Raman của graphene ........................................................................ 36 [iii]
  6. 1.3.2. Phương pháp phân tích nhiệt trọng lượng (TGA) ........................................ 38 1.3.3. Một số phương pháp phân tích khác ............................................................. 39 1.4. Cảm biến sinh học transistor hiệu ứng trường trên cơ cở vật liệu graphene .. 39 1.4.1 Giới thiệu chung về cảm biến sinh học .......................................................... 40 1.4.2. Transistor hiệu ứng trường trên cơ sở vật liệu graphene (GrFET)............. 41 1.4.2.1. Cấu trúc của GrFET ................................................................................ 41 1.4.2.2. Các đặc trưng truyền dẫn của GrFET ..................................................... 42 1.4.3. Transistor hiệu ứng trường có cực cổng nằm trong dung dịch trên cở sở vật liệu graphene (GrISFET)................................................................................ 42 1.4.4. Cảm biến sinh học GrISFET ......................................................................... 46 1.4.4.1. Giới thiệu về cảm biến sinh học GrISFET ............................................... 46 1.4.4.2. Cơ chế hoạt động của cảm biến sinh học GrISFET ................................ 47 1.5. Ứng dụng của cảm biến sinh học dựa trên cấu hình GrISFET trong phát hiện dư lượng thuốc BVTV atrazine .................................................................................. 48 1.5.1. Giới thiệu về thuốc BVTV atrazine ................................................................ 48 1.5.2. Enzyme urease ................................................................................................ 49 1.5.2.1. Giới thiệu chung về enzyme urease.......................................................... 49 1.5.2.2. Cơ chế xúc tác của enzyme urease........................................................... 50 1.5.2.3. Cơ chất của enzyme urease ...................................................................... 50 1.5.2.4. Các yếu tố ảnh hưởng đến hoạt tính của enzyme urease ......................... 51 1.5.3. Phương pháp cố định enzyme urease lên bề mặt kênh dẫn graphene ......... 52 1.5.4. Nguyên tắc hoạt động của cảm biến enzyme dựa trên cấu hình GrISFET trong phát hiện dư lượng thuốc BVTV atrazine ............................................ 54 CHƯƠNG 2: CHẾ TẠO VẬT LIỆU CNTs ĐỊNH HƯỚNG BẰNG PHƯƠNG PHÁP CVD NHIỆT ..................................................................................................... 55 2.1. Hệ CVD nhiệt trong chế tạo vật liệu CNTs định hướng ................................... 55 2.2. Chế tạo vật liệu VA-CNTs bằng phương pháp CVD nhiệt ............................... 56 2.2.1. Chuẩn bị đế và vật liệu xúc tác ...................................................................... 56 2.2.2. Quy trình chế tạo vật liệu VA-CNTs .............................................................. 57 2.2.3. Kết quả chế tạo vật liệu VA-CNTs ................................................................. 59 2.2.3.1. Ảnh hưởng của nồng độ dung dịch xúc tác .............................................. 59 2.2.3.2. Ảnh hưởng của hơi nước .......................................................................... 62 2.2.3.3. Ảnh hưởng của tỉ lệ thành phần kim loại xúc tác .................................... 68 2.2.4. Tóm tắt kết quả chế tạo vật liệu VA-CNTs .................................................... 73 [iv]
  7. 2.3. Chế tạo vật liệu HA-CNTs bằng phương pháp CVD nhiệt ............................... 73 2.3.1. Chuẩn bị đế và vật liệu xúc tác ...................................................................... 73 2.3.2. Quy trình chế tạo vật liệu HA-CNTs ............................................................. 74 2.3.3. Kết quả chế tạo vật liệu HA-CNTs................................................................. 76 2.3.3.1. Ảnh hưởng của nồng độ dung dịch xúc tác .............................................. 76 2.3.3.2. Ảnh hưởng của nhiệt độ CVD .................................................................. 78 2.3.3.3. Ảnh hưởng của lưu lượng khí nguồn cácbon ........................................... 80 2.3.4. Cơ chế mọc và cấu trúc của vật liệu HA-CNTs ............................................ 81 2.3.4.1. Cơ chế mọc của HA-CNTs ....................................................................... 81 2.3.4.2. Cấu trúc, tính chất của HA-CNTs ............................................................ 83 2.3.5. Tóm tắt kết quả chế tạo vật liệu HA-CNTs ................................................... 87 2.4. Kết luận .................................................................................................................. 87 CHƯƠNG 3: CHẾ TẠO VẬT LIỆU GRAPHENE BẰNG PHƯƠNG PHÁP CVD NHIỆT ........................................................................................................................... 89 3.1. Hệ CVD nhiệt trong chế tạo vật liệu graphene .................................................. 89 3.2. Chuẩn bị vật liệu xúc tác ........................................................................................ 89 3.3. Quy trình chế tạo graphene trên đế Cu ............................................................. 90 3.4. Kết quả chế tạo màng graphene .......................................................................... 91 3.4.1. Ảnh hưởng của hình thái bề mặt đế Cu ........................................................ 91 3.4.2. Ảnh hưởng của nhiệt độ CVD ....................................................................... 97 3.4.3. Ảnh hưởng của lưu lượng khí nguồn cácbon ............................................... 101 3.4.4. Ảnh hưởng của áp suất ................................................................................. 105 CHƯƠNG 4: CẢM BIẾN ENZYME-GrISFET TRONG PHÁT HIỆN DƯ LƯỢNG THUỐC BVTV ATRAZINE ..................................................................................... 110 4.1. Cơ sở lựa chọn vật liệu graphene trong chế tạo cảm biến enzyme GrISFET111 4.1.1. Công nghệ chế tạo ........................................................................................ 111 4.1.2. Cấu trúc và tính chất của vật liệu ................................................................ 111 4.1.3. Diện tích bề mặt hiệu dụng .......................................................................... 113 4.1.4. Độ linh động của hạt tải điện của kênh dẫn ............................................... 115 4.2. Chế tạo cảm biến enzyme-GrISFET ................................................................. 115 4.2.1. Thiết kế mặt nạ cho điện cực ....................................................................... 116 4.2.2. Chế tạo điện cực ........................................................................................... 117 4.2.2.1. Vật liệu hóa chất .................................................................................... 117 4.2.2.2. Quy trình chế tạo điện cực ..................................................................... 118 [v]
  8. 4.2.3. Chế tạo cảm biến enzyme-GrISFET ............................................................ 119 4.2.3.1. Vật liệu hóa chất .................................................................................... 119 4.2.3.2. Quy trình tách chuyển màng graphene từ đế Cu sang đế điện cực ....... 120 4.2.3.3. Cố định enzyme urease trên bề mặt của điện cực GrISFET .................. 121 4.3. Ứng dụng cảm biến enzyme-GrISFET trong phát hiện dư lượng thuốc BVTV atrazine ........................................................................................................................ 122 4.3.1. Hóa chất và thiết bị đo .................................................................................. 123 4.3.1.1. Hóa chất ................................................................................................. 123 4.3.1.2. Hệ đo ...................................................................................................... 123 4.3.2. Phương pháp đo các đặc trưng của cảm biến enzyme-GrISFET .............. 125 4.4. Kết quả và thảo luận ........................................................................................... 126 4.4.1. Hình thái cấu trúc của cảm biến enzyme-GrISFET ................................... 126 4.4.2. Xác định nồng đồ cơ chất urê bão hòa cho cảm biến enzyme-GrISFET .. 127 4.4.3. Đặc trưng đáp ứng của cảm biến enzyme-GrISFET trong cơ chất urê .... 128 4.4.3.1. Đặc tuyến ra Ids - Vds của cảm biến ........................................................ 128 4.4.3.2. Đặc tuyến truyền dẫn Ids - Vg của cảm biến ........................................... 129 4.4.3.3. Các thông số của cảm biến .................................................................... 130 4.4.4. Ảnh hưởng của quá trình chế tạo đến tín hiệu ra của cảm biến enzyme- GrISFET ........................................................................................................ 133 4.4.4.1. Ảnh hưởng của nhiệt độ cố định enzyme ............................................... 133 4.4.4.2. Ảnh hưởng của thời gian cố định enzyme urease .................................. 135 4.4.5. Ứng dụng của cảm biến enzyme-GrISFET trong phát hiện dư lượng thuốc BVTV atrazine ............................................................................................... 136 4.4.5.1. Đặc tuyến truyền dẫn của cảm biến khi bị ức chế bởi atrazine ............. 136 4.4.5.2. Độ lặp lại của cảm biến ......................................................................... 137 4.4.5.3. Giới hạn phát hiện của cảm biến ........................................................... 138 4.4.5.4. Thời gian sống của cảm biến ................................................................. 141 4.5. Kết luận ................................................................................................................ 143 KẾT LUẬN CHUNG ................................................................................................. 144 DANH MỤC CÁC BÀI BÁO ĐÃ CÔNG BỐ ......................................................... 146 TÀI LIỆU THAM KHẢO ......................................................................................... 148 PHỤ LỤC...............................................................................................................163 [vi]
  9. DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT TT Viết tắt Từ tiếng Anh đầy đủ Nghĩa tiếng Việt 1 APCVD Air Pressure Thermal Lắng đọng hóa học pha hơi Chemical vapour deposition trong điều kiện áp suất khí quyển 2 Atz Atrazine Thuốc diệt cỏ 3 AFM Atom Force Microscope Kính hiển vi lực nguyên tử 4 BVTV Bảo vệ thực vật 5 CVD Chemical vapour deposition Lắng đọng hóa học pha hơi 6 CNTs Carbon nanotubes Ống nanô cácbon 7 CNTFET Field effect transistor based Transistor hiệu ứng trường on carbon nanotube trên cơ sở ống nanô cácbon 8 COOH Carboxyl Nhóm chức cacboxylic 9 DWCNTs Double-walled carbon Ống nanô cácbon đôi tường nanotubes 10 EFSA European Food Safety Cơ quan an toàn thực phẩm Authority Châu Âu 11 FET Field effect transistor Transistor hiệu ứng trường 12 FE-SEM Field Emision Scanning Hiển vi điện tử quét phát xạ Electron Microscope trường 13 FTIR Fourier transform infrared Phổ hồng ngoại biến đổi spectroscopy Fourier 14 FWHM Full width of half maximum độ rộng tại vị trí ½ giá trị lớn nhất 15 Gr Graphene Graphene 16 GrFET Field effect transistor based Transistor hiệu ứng trường on graphene trên cơ sở graphene 17 GrISFET Ion sensitive field effect Transistor hiệu ứng trường transistor on graphene nhạy ion trên cơ sở graphene 18 G, S, D Gate, Source, Drain Cực cổng, cực nguồn, cực máng 19 GA Glutaraldehyde Chất tạo liên kết 20 HA-CNTs Horizontally aligned carbon Ống nanô cácbon định nanotubes hướng nằm ngang 21 HACNT- Field effect transistor based Transistor hiệu ứng trường ISFET on horizontally aligned trên cơ sở ống nanô cácbon carbon nanotube định hướng nằm ngang 22 HRTEM High Resolution Hiển vi điện tử truyền qua Transmission electron phân giải cao microscopy [vii]
  10. 23 ISFET Ion sensitive field effect Transistor hiệu ứng trường transistor nhạy ion 24 IUPAC International Union of Pure Liên minh Quốc tế về Hóa and Applied Chemistry học thuần túy và Hóa học ứng dụng 25 LPCVD Low Pressure Thermal Lắng đọng hóa học pha hơi Chemical vapour deposition trong điều kiện áp suất thấp 26 LO Longitudinal Mode dao động dọc theo trục của ống 27 MWCNTs Multi-walled carbon Ống nanô cácbon đa tường nanotubes 28 M Metal Kim loại 29 MOSFET Metal oxide semiconductor Transistor hiệu ứng trường field effect transistor cấu trúc bán dẫn oxit kim loại 30 MEMS Micro Electronic Mechanical Hệ vi cơ điện tử System 31 MRL Maximum Residue Limited dư lượng tối đa 32 PBS Phosphate buffered saline Muối đệm phốt phát 33 PMMA Polymethylmethacylate Chất Polyme 34 RBM Radial breathing mode Mode dao động theo phương bán kính 35 SWCNTs Single-walled carbon Ống nanô cácbon đơn tường nanotubes 36 SC Semiconductor Bán dẫn 37 TGA Thermal gravimetric analysis Phân tích nhiệt trọng lượng 38 TO Transverse Mode dao động theo phương cong của ống 39 USEPA United states environmental Cơ quan bảo vệ môi trường protection agency Mỹ 40 VA-CNTs Vertically aligned carbon Ống nanô cácbon định nanotubes hướng vuông góc 41 WHO World Health Organization Tổ chức Y tế thế giới [viii]
  11. DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1: Biểu diễn vectơ xoắn và cấu trúc của CNTs...............................................8 Hình 1.2: Các dạng cấu trúc của CNTs ......................................................................9 Hình 1.3: Các dạng hình thái học của CNTs .............................................................9 Hình 1.4: Biều đồ tán sắc của các CNTs ..................................................................12 Hình 1.5: Mật độ trạng thái điện tử 1D trên ô cơ sở đối với ống zigzag (9,0) và (10,0), đường nét đứt tương ứng với mật độ trạng thái của mạng graphene........13 Hình 1.6: Cấu tạo và sơ đồ nguyên lý hệ thiết bị CVD nhiệt ...................................15 Hình 1.7: Sơ đồ mô tả sự hình thành của CNTs .......................................................15 Hình 1.8: Các mô hình mọc của CNTs.....................................................................16 Hình 1.9: Chế tạo HA-CNTs bằng phương pháp CVD nhiệt nhanh .......................19 Hình 1.10: Ảnh SEM của HA-CNTs mọc theo phương ngang bằng phương pháp CVD thông thường và CVD nhiệt nhanh .........................................................19 Hình 1.11: Mọc HA-CNTs theo cơ chế “cánh diều” .................................................20 Hình 1.12: Các bước chế tạo một loại cảm biến ion sử dụng vật liệu VA-CNTs......22 Hình 1.13: Ảnh AFM của một đơn sợi CNT trên ba điện cực Pt và sơ đồ mặt cắt ngang của CNT-FET...........................................................................................23 Hình 1.14: Cấu tạo cảm biến protein trên cơ sở thảm vật liệu HA-CNTs và ảnh SEM của thảm vật liệu HA-CNTs trên bề mặt của cảm biến protein ...............25 Hình 1.15. Các liên kết của nguyên tử cácbon trong mạng graphene........................26 Hình 1.16: Minh họa cấu trúc vùng năng lượng của graphene trong vùng Brillouin thứ nhất dựa trên hệ thức tán sắc từ phép gần đúng liên kết mạnh.................28 Hình 1.17: Sự thay đổi điện trở và độ dẫn điện của Gr khi thay đổi thế áp ...............28 Hình 1.18: Cơ chế hình thành màng graphene ..........................................................31 Hình 1.19: Cấu trúc phổ Raman của CNTs ...............................................................34 Hình 1.20: Dải G của MWCNT, SWCNT bán dẫn, SWCNT kim loại và sự phụ phuộc của vị trí các đỉnh trong dải G vào đường kính của SWCNTs .................35 Hình 1.21: Phổ Raman của graphene với số lớp khác nhau36 Hình 1.22: So sánh phổ Raman của Graphene đơn lớp và đôi lớp với hai nguồn laze có bước sóng tương ứng là 514,5 nm và 633 nm .....................................37 Hình 1.23: Phổ tán xạ Raman của graphene trên đế Cu ứng với các nguồn sáng laze có năng lượng kích thích thay đổi từ 2,18 eV – 3,81 eV..........................37 [ix]
  12. Hình 1.24: Hình ảnh Raman mapping của graphene trên đế SiO2/Si ........................38 Hình 1.25: Sơ đồ nguyên lý của một cảm biến sinh học ...........................................40 Hình 1.26: GrFET cực cổng trên và GrFET cực cổng trên dưới ...............................41 Hình 1.27: Đặc tuyến truyền dẫn Ids - Vg và đặc tuyến lối ra Ids -Vds của GrFET .....42 Hình 1.28: Sơ đồ cấu tạo và sơ đồ nguyên lý của GrISFET .....................................43 Hình 1.29: Đường liên nét là đặc tuyến truyền dẫn Ids - Vg của GrISFET trong hai dung dịch PBS và trong dung dịch PBS có thêm glucose nồng độ 1mM. Đường đứt nét là đường hỗ dẫn gm của GrISFET khi đo trong PBS ...................45 Hình 1.30: Cảm biến sinh học GrISFET trong phát hiện vi khuẩn E.coli .................46 Hình 1.31: Kết quả đo sự phụ thuộc của dòng IDS theo VG với nồng độ ion K+ thay đổi từ 1mM tới 0 M và của thế điện cực cổng VDirac theo nồng độ K+...........47 Hình 1.32: Sự thay đổi của thế VCNP (VDirac) theo nồng độ DNA b) sự thay đổi độ linh động của hạt tải điện theo nồng độ DNA .................................................48 Hình 1.33: Mô tả cấu tạo và trung tâm hoạt động của enzyme urease ......................50 Hình 1.34: Cơ chế xúc tác của urease........................................................................50 Hình 2.1: Ảnh chụp hệ CVD nhiệt trong chế tạo vật liệu CNTs định hướng ...........55 Hình 2.2: Ảnh TEM và đồ thị phân bố kích thước hạt của các mẫu xúc tác cobalt ferrit sử dụng trong chế tạo vật liệu VA-CNTs.................................................57 Hình 2.3: Sơ đồ khối hệ CVD nhiệt chế tạo vật liệu VA-CNTs ...............................58 Hình 2.4: Quy trình chế tạo vật liệu VA-CNTs bằng phương pháp CVD nhiệt .......58 Hình 2.5: Kết quả chụp AFM của hai mẫu Fe3O4 0,026 g.mL-1 và CoFe1,5O4 0,033 g.mL-1 sau khi được phủ lên trên đế bằng phương pháp quay phủ ..........60 Hình 2.6: Ảnh SEM của VA-CNTs được mọc từ các mẫu xúc tác Fe3O4 và CoFe1,5O4 với nồng độ dung dịch khác nhau ............................................................60 Hình 2.7. Ảnh SEM và đồ thị phân bố đường kính của VA-CNTs được mọc từ mẫu xúc tác Fe3O4 (M1) 0,026 g.mL-1 trong hai trường hợp không có hơi nước và có hơi nước với lượng 60 sccm trong cùng điều kiện CVD. ...............63 Hình 2.8: Ảnh TEM của hai mẫu VA-CNTs được tổng hợp với cùng điều kiện CVD trong hai trường hợp không có hơi nước và có hơi nước ........................64 Hình 2.9: Phổ tán xạ Raman của hai mẫu VA-CNTs được tổng hợp trên mẫu xúc tác Fe3O4 0,026 g.mL-1 trong cùng điều kiện CVD trong hai trường hợp: không có hơi nước, có hơi nước với lưu lượng 60 sccm .....................................65 [x]
  13. Hình 2.10: Ảnh SEM của các mẫu VA-CNTs được tổng hợp sử dụng mẫu xúc tác CoFe1.5O4 (M1) 0,033 g.mL-1 trong cùng một điều kiện CVD với lưu lượng hơi nước khác nhau .................................................................................66 Hình 2.11: Đồ thị mô tả ảnh hưởng của lưu lượng hơi nước tới chiều dài và đường kính của CNTs .........................................................................................67 Hình 2.12: Ảnh SEM của các mẫu VA-CNTs mọc từ 04 mẫu xúc tác với tỉ lệ thành phần Co2+:Fe3+ = x : y khác nhau trong cùng điều kiện CVD ........69 Hình 2.13: Đồ thị mô tả ảnh hưởng của tỉ lệ thành phần xúc tác tới chiều cao và đường kính của VA-CNTs ..................................................................................70 Hình 2.14: Phổ tán xạ Raman của các mẫu VA-CNTs mọc từ 04 mẫu xúc tác với tỉ lệ thành phần Co2+:Fe3+ = x : y khác nhau trong cùng điều kiện CVD ........71 Hình 2.15: Đường cong TGA của các mẫu VA-CNTs được mọc từ 04 mẫu xúc tác với tỉ lệ thành phần Co2+:Fe3+ khác nhau .......................................................72 Hình 2.16: Sơ đồ mô tả các bước chuẩn bị đế và thứ tự đặt các đế trong chế tạo vật liệu HA-CNTs ..........................................................................................74 Hình 2.17: Sơ đồ lắp đặt hệ thiết bị CVD trong chế tạo HA-CNTs ..........................74 Hình 2.18:Quy trình chế tạo vật liệu HA-CNTs bằng phương pháp CVD nhiệt .......75 Hình 2.19: Mô tả quá trình dịch chuyển lò trong phương pháp CVD nhiệt nhanh ...75 Hình 2.20: Ảnh SEM của HA-CNTs được mọc trên mẫu xúc tác FeCl3 với các nồng độ dung dịch khác nhau. ..........................................................................76 Hình 2.21: Ảnh SEM của HA-CNTs được mọc trên mẫu xúc tác FeCl3 0,01M và đồ thị phân bố mật độ CNTs theo chiều dài của đế tính từ biên của đế hứng CNTs với các nồng độ xúc tác khác nhau ................................................77 Hình 2.22: Ảnh SEM của CNTs được mọc trên mẫu xúc tác FeCl3 với các nồng độ dung dịch khác nhau ................................................................................78 Hình 2.23: Ảnh SEM của HA-CNTs và đồ thị phân bố mật độ CNTs theo chiều dài của đế với các nhiệt độ CVD khác nhau ..................................................79 Hình 2.24: Ảnh SEM các mẫu HA-CNTs mọc từ mẫu xúc tác FeCl3 0,01M và đồ thị phân bố mật độ HA-CNTs theo chiều dài của đế với lưu lượng hơi cồn khác nhau..........................................................................................................80 Hình 2.25: Ảnh quang học và ảnh SEM tương ứng của đế SiO2/Si với các khe có độ rộng 60 m và ảnh SEM của HA-CNTs trên đế SiO2/Si có rãnh ............82 [xi]
  14. Hình 2.26: Ảnh SEM mô tả cấu tạo của điện cực răng lược và kết quả mọc HA-CNTs trên điện cực răng lược.............................................................................80 Hình 2.27: Ảnh SEM và ảnh AFM của đơn sợi HA-CNTs trên bề mặt đế SiO2/Si ..83 Hình 2.28: Sơ đồ bố trí thí nghiệm mọc trực tiếp HA-CNTs trên lưới TEM, ảnh SEM và ảnh HRTEM của HA-CNTs sau khi đã được mọc trên lưới TEM ......84 Hình 2.29: Phổ tán xạ Raman của HA-CNTs ............................................................84 Hình 2.30: Phổ tán xạ Raman trên 4 đơn sợi DWCNTs được tạo bởi hai lớp SWCNTs có cấu hình khác nhau. .............................................................................86 Hình 3.1: Sơ đồ khối hệ CVD nhiệt trong chế tạo vật liệu graphene ........................89 Hình 3.2: Quy trình chế tạo vật liệu graphene trên đế Cu bằng phương pháp CVD trong điều kiện áp suất khí quyển ............................................................90 Hình 3.3: Ảnh chụp hai phương pháp xử lý bề mặt các đế Cu.....................................92 Hình 3.4: Ảnh chụp quang học đế Cu trước và sau khi xử lý bằng axit HNO3 5% ......92 Hình 3.5: Ảnh SEM bề mặt đế Cu trước khi xử lý bằng axit, sau khi xử lý bằng axit HNO3 (5%) và sau khi xử lý bằng phương pháp đánh bóng điện hóa ........92 Hình 3.6: Ảnh SEM của các mẫu graphene được tổng hợp trên đế Cu trong các trường hợp không xử lý bằng axit, xử lý bằng axít HNO3 5% và xử lý bằng bóng điện hóa với thời gian CVD 3 phút ..........................................................93 Hình 3.7: Kết quả chụp SEM của các mẫu màng graphene trên đế Cu trong các trường hợp: a) trước khi xử lý, b) sau khi xử lý bằng axít HNO3 5% và c) sau khi xử lý bằng phương pháp đánh bóng điện hóa ..........................................94 Hình 3.8: Phổ Raman của mẫu graphene trên đế Cu được tổng hợp trên đế Cu trong các trường hợp trước khi xử lý, sau khi xử lý bằng axít HNO3 5% và sau khi xử lý bằng phương pháp đánh bóng điện hóa ...................................95 Hình 3.9: Ảnh SEM của bề mặt đế Cu sau khi CVD ở các nhiệt độ khác nhau ........97 Hình 3.10: Phổ Raman của các mẫu màng graphene trên đế Cu được tổng hợp tại các nhiệt độ từ 800oC đến 1030oC với cùng tỉ lệ khí Ar/H2/CH4 = 1000/300/20 sccm và thời gian CVD 30 phút ...............................................................98 Hình 3.11: Sự phụ thuộc của các chỉ số I2D/IG, ID/IG vị trí đỉnh 2D và FWHM của các mẫu màng graphene theo nhiệt độ CVD ..................................................99 Hình 3.12: Ảnh SEM của màng graphene được tổng hợp tại 1000oC, trong 30 phút và tỉ lệ Ar/H2 = 1000/300 sccm với lưu lượng khí CH4 khác nhau .............101 [xii]
  15. Hình 3.13: Phổ Raman và là kết quả fit hàm Lorentz dải 2D của các mẫu màng graphene trên đế Cu với lưu lượng khí CH4 khác nhau: 5 sccm, 10 sccm, 20 sccm và 30 sccm ...............................................................................102 Hình 3.14: Sự phụ thuộc của các chỉ số vị trí đỉnh 2D, FWHM, I2D/IG và ID/IG rút ra từ phổ Raman của các mẫu màng graphene theo lưu lượng khí CH4 .........103 Hình 3.15: Ảnh HRTEM của các mẫu màng graphene được tổng hợp với lưu lượng khí nguồn CH4 bằng 10 sccm và 30 sccm ..............................................104 Hình 3.16: Ảnh quang học và phổ tán xạ Raman trên đế Cu của hai mẫu màng graphene Gr17 và Gr18 được tổng hợp bằng hai phương pháp APCVD và LPCVD ..................................................................................................106 Hình 3.17: Phổ Raman của các mẫu màng graphene trên đế Cu được tổng hợp bằng phương pháp LPCVD tại 1000oC, trong 30 phút và tỉ lệ H2/CH4 = 20/0,3 sccm với áp suất thay đổi từ 80 torr đến 20 torr.....................................108 Hình 4.1: Các đường đặc tuyến Ids -Vds và Ids -Vg của HACNTs-ISFET ...............112 Hình 4.2: Cấu hình và ảnh SEM của FET sử dụng thảm HA-CNTs và đặc tuyến truyền dẫn Ids - Vg của HA-CNTFET trong hai trường hợp thảm HA-CNTs có tỉ lệ thành phần CNTs có tính chất dẫn tương ứng là 52,4 % và 97,6% ......113 Hình 4.3: Quy trình chế tạo cảm biến enzyme-GrISFET ........................................116 Hình 4.4: Mask điện cực được thiết kế và mask điện cực sau khi chế tạo ..............117 Hình 4.5: Quy trình chế tạo điện cực bằng phương pháp vi điện tử ........................ 118 Hình 4.6: Ảnh chụp điện cực sau khi được cắt rời từ phiến silíc............................. 119 Hình 4.7: Quy trình tách chuyển màng graphene từ đế Cu sang điện cực...............120 Hình 4.8: Công thức cấu tạo của GA và vai trò cầu nối của GA ............................. 121 Hình 4.9: Ảnh chụp quang học của các cảm biến enzyme-GrISFET sau khi đã chế tạo hoàn thiện ............................................................................................... 122 Hình 4.10: Cơ chế phát hiện atrazine của cảm biến enzyme-GrISFET ................... 123 Hình 4.11: Cách lắp đặt hệ đo các đặc trưng của cảm biến enzyme-GrISFET .......124 Hình 4.12: Hệ thiết bị đo các đặc trưng của cảm biến enzyme-GrISFET ...............124 Hình 4.13: Màn hình giao diện cài đặt các thông số trong quá trình đo các đường đặc tuyến Ids -Vds và Ids -Vg của cảm biến enzyme-GrISFET........................ 125 Hình 4.14: Ảnh quang học và ảnh hiển vi điện tử quét bề mặt điện cực FET sau khi đã chuyển màng graphene lên trên ............................................................. 127 [xiii]
  16. Hình 4.15: Ảnh quang học bề mặt của enzyme urease/GrISFET và GA/enzyme urease/Gr ................................................................................................ 127 Hình 4.16: Đường đặc trưng Ids-Vg của cảm biến với nồng độ cơ chất urê từ 5 tới 35 mM. ........................................................................................................128 Hình 4.17: Đường đặc trưng Ids - Vds của cảm biến đo trong cơ chất urê ...............129 Hình 4.18: Đường đặc trưng Ids-Vg của cảm biến đo trong cơ chất urê ..................130 Hình 4.19: Đường đặc trưng Ig - Vg của GrISFET đo trong cơ chất urê .................130 Hình 4.20: Đường đặc tuyến gm – Vg của GrISFET tại Vds = 1 V ........................... 131 Hình 4.21: Đường đặc trưng Ids - Vg của cảm biến với các nhiệt độ cố định đầu dò sinh học khác nhau và đồ thị biểu diễn sự phụ thuộc của ΔIds theo nhiệt độ cố định ........................................................................................................134 Hình 4.22: Đường đặc trưng Ids - Vg của cảm biến với thời gian cố định đầu dò sinh học khác nhau và đồ thị biểu diễn sự phụ thuộc của ΔIds theo thời gian cố định đầu dò sinh học ..............................................................................135 Hình 4.23: Đường đặc trưng truyền dẫn Ids - Vg của cảm biến với Vg từ 0 V đến 3 V bước 0,5 V, Vds = 1 V, trong hai trường hợp trước sau khi bị ức chế bởi atrazine có nồng độ 2  10-2 ppb ............................................................ 137 Hình 4.24: Kết quả đo 6 lần đặc trưng Ids – Vg của cảm biến với nồng độ atrazine bằng 2  10-4 ppb............................................................................................. 138 Hình 4.25: Đặc trưng Ids - Vg cảm biến khi tăng nồng độ atrazine từ 2  10-4 ppb đến 20 ppb ....................................................................................................139 Hình 4.26: Đồ thị biểu diễn sự phụ thuộc của cường độ dòng tín hiệu lối ra ΔIds và độ linh động hạt tải điện của kênh dẫn graphene, mức độ ức chế enzyme của cảm biến theo nồng độ atrazine.............................................................. 140 Hình 4.27: Đường đặc trưng Ids - Vg của cảm biến, với Vds=1V, đo trong cơ chất urê trong ba trường hợp: Đo ngay sau khi chế tạo, sau thời gian lưu trữ 3 tháng và sau thời gian lưu trữ 5 tháng.............................................................. 142 [xiv]
  17. DANH MỤC CÁC BẢNG BIỂU Bảng 2.1: Bảng tổng hợp các mẫu hạt xúc tác cobalt ferrit sử dụng trong chế tạo vật liệu VA-CNTs ..........................................................................................57 Bảng 2.2: Bảng tổng hợp kết quả chế tạo vật liệu VA-CNTs được mọc từ các mẫu xúc tác Fe3O4 và CoFe1,5O4 với nồng độ dung dịch khác nhau ......................62 Bảng 2.3: Bảng so sánh các thông số của các mẫu VA-CNTs được chế tạo trên mẫu xúc tác Fe3O4 0,026 g.mL-1 trong hai trường hợp có và không có hơi nước đưa vào trong quá trình CVD ..................................................................63 Bảng 2.4: Bảng so sánh các thông số của các mẫu VA-CNTs được chế tạo trên mẫu xúc tác CoFe1.5O4 0,033 g.mL-1 với lưu lượng hơi nước khác nhau ........66 Bảng 2.5: Bảng tổng hợp thông số của các mẫu VA-CNTs được mọc từ 04 mẫu xúc tác với tỉ lệ thành phần Co2+:Fe3+ = x : y khác nhau trong cùng một điều kiện CVD. ................................................................................................69 Bảng 2.6: Bảng tổng hợp kết quả phân tích TGA của các mẫu VA-CNTs được mọc từ 04 mẫu xúc tác với tỉ lệ thành phần Co2+:Fe3+ khác nhau ...................72 Bảng 3.1: Bảng so sánh mật độ và kích thước mầm graphene được tổng hợp trên đế Cu được xử lý bề mặt bằng các phương pháp khác nhau ........................94 Bảng 3.2: Bảng so sánh các giá trị I2D/IG, vị trí đỉnh các D,G, 2D và FWHM của đỉnh 2D trong các trường hợp trước khi xử lý, sau khi xử lý bằng axít HNO3 5% và sau khi xử lý bằng phương pháp đánh bóng điện hóa với thời gian CVD 30 phút. ...........................................................................................96 Bảng 3.3: Bảng so sánh các giá trị I2D/IG, ID/IG vị trí đỉnh các D,G, 2D và FWHM của các mẫu màng graphene được tổng hợp tại các nhiệt độ CVD từ 800oC đến 1030oC .....................................................................................................99 Bảng 3.4: Bảng so sánh các chỉ số: vị trí đỉnh 2D, FWHM, số đỉnh của dải 2D khi fit bằng hàm Lorentz, tỉ số I2D/IG và ID/IG rút ra từ phổ raman của các mẫu màng graphene trên đế Cu được tổng hợp với các lưu lượng khí CH4 khác nhau: 5 sccm, 10 sccm, 20 sccm và 30 sccm .........................................103 Bảng 3.5: Bảng so sánh các chỉ số: vị trí đỉnh 2D, FWHM, tỉ số I2D/IG và ID/IG rút ra từ phổ raman của các mẫu màng graphene mẫu màng graphene Gr17 và Gr18 trên đế Cu được được tổng hợp bằng hai phương pháp APCVD và LPCVD ..................................................................................................106 [xv]
  18. Bảng 3.6: Bảng so sánh các chỉ số: vị trí đỉnh 2D, FWHM, tỉ số I2D/IG và ID/IG rút ra từ phổ raman của các mẫu màng graphene trên đế Cu được tổng hợp bằng phương pháp LPCVD tại 1000oC, trong 30 phút và tỉ lệ H2/CH4 = 20/0,3 sccm với áp suất thay đổi từ 80 Torr đến 20 Torr .................................108 Bảng 4.1: Bảng kết quả đo 6 lần nồng độ atrazine CATZ = 2  10-4 ppb..................138 Bảng 4.2: Sự phụ thuộc của các giá trị như dòng tín hiệu ra, độ linh động của hạt tải điện và mức độ ức chế enzyme của cảm biến sinh học GrISFET vào nồng độ atrazine. .............................................................................................140 Bảng 4.3: Bảng so sánh kết quả giới hạn phát hiện của một số cảm biến trong phát dư lượng thuốc bảo vệ thực vật atrazine. ....................................................141 Bảng 4.4: Sự thay đổi vị trí của điểm Dirac point (Ids,Vg) sau thời gian lưu trữ 3 tháng và 5 tháng: ..............................................................................................142 [xvi]
  19. MỞ ĐẦU Sự phát triển mạnh mẽ của khoa học và công nghệ trong vài thập kỷ gần đây đã khám phá một loại thù hình mới của cácbon, đó là vật liệu cácbon cấu trúc nanô. Loại vật liệu này có cấu trúc tinh thể độc đáo, sở hữu nhiều tính chất vật lý, hóa học và cơ học ưu việt. Chính vì vậy, vật liệu cácbon cấu trúc nanô là đối tượng được tập trung nghiên cứu mạnh mẽ trên cả hai phương diện khoa học cơ bản và khoa học ứng dụng. Vật liệu ống nanô cácbon (CNTs) là một trong những dạng thù hình tiêu biểu của vật liệu cácbon cấu trúc nanô đã được giới khoa học-công nghệ quốc tế quan tâm đặc biệt kể từ khi phát hiện vào năm 1991 [1] . Vật liệu CNTs được đánh giá là hình ảnh đại diện tiêu biểu của một công nghệ mới, công nghệ nanô. Lý do chính để loại vật liệu này trở thành trung tâm chú ý là chúng có nhiều tính chất cơ học, vật lý và hoá học đặc biệt. Ngoài ra, vật liệu CNTs còn có tính bất đẳng hướng cao trong tính chất dẫn điện và dẫn nhiệt, tức là tính dẫn điện, dẫn nhiệt dọc theo phương trục của ống là khác biệt đáng kể so với phương bán kính của ống [2]. Vì vậy, trong thời gian gần đây vật liệu CNTs với cấu trúc định hướng đã thu hút được sự quan tâm rất lớn của các nhà nghiên cứu trong cả lĩnh vực chế tạo và ứng dụng [3]. Vật liệu graphene là dạng thù hình mới nhất của cácbon được tạo ra trong phòng thí nghiệm năm 2004 [4]. Có thể nói rằng, những gì xảy ra đối với CNTs dường như đang lặp lại với graphene từ sự kỳ vọng, tính chất kỳ lạ và đặc biệt là tiềm năng ứng dụng trong linh kiện điện tử, quang điện tử và tích trữ năng lượng. Chỉ sau sáu năm kể từ khi được tìm thấy, hai nhà khoa học khám phá ra vật liệu graphene đã nhận giải thưởng Nobel Vật lý danh giá vào năm 2010, qua đó chúng ta có thể hình dung được tính hấp dẫn, tiềm năng hứa hẹn của vật liệu graphene [5]. Hiện nay, có rất nhiều phương pháp khác nhau để chế tạo vật liệu CNTs và vật liệu graphene, nhưng phổ biến nhất là phương pháp lắng đọng pha hơi hóa học (CVD) . Sử dụng phương pháp CVD trong chế tạo vật liệu CNTs và vật liệu graphene [6], [7] có nhiều thuận lợi như vận hành đơn giản, có thể tổng hợp vật liệu số lượng lớn với chất lượng cao và đặc biệt là có thể điểu khiển hướng mọc của vật liệu CNTs theo phương vuông góc (VA-CNTs) hoặc theo phương nằm ngang (HA-CNTs) trên bề mặt của đế, điều này là rất cần thiết cho nhiều nghiên cứu cơ bản và ứng dụng khác nhau [6]. Đây là một trong những lợi thế lớn nhất của phương pháp CVD so với các phương pháp cổ điển khác. [1]
  20. Với các tính chất độc đáo có một không hai như có diện tích bề mặt lớn, dẫn điện dẫn nhiệt tốt, có độ bền cơ học cao, có độ linh động điện tử lớn, bền về mặt hóa học khi hoạt động trong môi trường dung dịch và độ tương thích sinh học cao, vật liệu CNTs và graphene đã và đang mở ra nhiều triển vọng ứng dụng mới trong lĩnh vực điện tử, năng lượng và đặc biệt là trong chế tạo cảm biến sinh học có kích thước siêu nhỏ [6],[7],[10] . Trong đó, cảm biến dựa trên cấu hình transistor hiệu ứng trường (FET) và đặc biệt là transistor hiệu ứng trường có điện cực cổng nằm trong dung dịch (ISFET) sử dụng vật liệu CNTs/graphene cho thấy có độ nhạy cao, thời gian đáp ứng nhanh và giới hạn phát hiện rất thấp [8],[9] . Điều này là do vật liệu CNTs/graphene trong cảm biến được tiếp xúc trực tiếp với chất cần phân tích và có thể chuyển đổi một cách trực tiếp các phản ứng sinh học trên bề mặt điện cực thành tín hiệu điện. Vì thế, chỉ cần một sự thay đổi nhỏ chất cần phân tích cũng có thể được phát hiện . [9] Một số cảm loại cảm biến sinh học dựa trên cấu hình FET và ISFET sử dụng vật liệu CNTs và vật liệu graphene đã được đưa ra trong phát hiện một số chất như glucose [12] , DNA [14], atrazine [15], vi khuẩn E.coli [17],.v..v... Ở Việt Nam, vật liệu CNTs và vật liệu graphene cũng đã thu hút được sự quan tâm của nhiều nhóm nghiên cứu cả về công nghệ chế tạo và ứng dụng. Trong lĩnh vực chế tạo vật liệu, Viện Khoa học vật liệu (IMS) thuộc Viện Hàn lâm Khoa học và Công nghệ Việt Nam (VAST) là một trong những nơi đầu tiên tại Việt Nam đã chế tạo thành công vật liệu CNTs bằng phương pháp CVD nhiệt vào năm 2003 [19] . Bằng phương pháp CVD nhiệt trên hệ 04 ống lò phản ứng thép không gỉ, nhóm nghiên cứu tại Viện Khoa học vật liệu đã tổng hợp CNTs với sản lượng lớn (15g/30 phút CVD, tương đương 200g/ngày). Các sợi CNTs tổng hợp được là đa tường, với đường kính ống từ 15-120 nm và độ sạch 94% [20] . Viện Khoa học vật liệu cũng là một trong những đơn vị tiên phong tại Việt Nam chế tạo thành công vật liệu graphene bằng phương pháp CVD nhiệt vào năm 2012. Ngoài Viện Khoa học vật liệu, Trung tâm đào tạo Quốc tế về Khoa học vật liệu (ITIMS) và Viện Vật lý Kỹ thuật thuộc Đại học Bách Khoa Hà Nội là những cơ sở đã chế tạo thành công vật liệu CNTs. Tuy nhiên, nhóm nghiên cứu tại ITIMS cũng như tại Viện Vật lý Kỹ thuật tập trung nhiều vào các nghiên cứu ứng dụng, trong khi nghiên cứu chế tạo CNTs số lượng lớn chưa được tập trung nghiên cứu. Viện Vật lý ứng dụng và thiết bị khoa học thuộc Viện Hàn lâm Khoa học và Công nghệ Việt Nam cũng đã chế tạo thành công vật liệu graphene. [2]
nguon tai.lieu . vn